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• In this presentation I will discuss only a part of my 
contribution to the recent CMS W→ev cross-section 
measurement

CMS ECAL:
data certification, 
ECAL software

CMS EGAMMA: 
Electron Id, Supercluster 
cleaning, electron 
efficiency, egamma 
skimming

CMS EWK GROUP: 
Wev and Zee studies: 
electron efficiency, 
signal extraction, event 
and electron selection, 
software and ntuple 
production

Other research work:
Stochastic thermostats: Phys. Rev. B78, 094305 (2008), 
J. Phys.: Cond. Matt. 22, 074205 (2010) 
Scanning Tunneling Microscopy: Phys. Rev. B78, 165302 (2008)
Optics (Solitons in LHM): Phys. Rev. E79, 037601 (2009) 

Introduction (I)
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Introduction (II)

• Major CMS Responsibilities:
• Contact for CMS Egamma Electron Selections (Oct 09 till 

present)
• ECAL data certification expert (Aug 09 till present)
• EWK Wenu/Zee software contact, ntuple production (May 09 till 

present)
• Co-editor in CMS PAS EGM-10-001, Section for Electron 

Isolation (January 2010).
• Main contributor in CMS-PAS-EWK-09-004
• Contact for Egamma skimming operations and EWK electron 

operations (CMS October 09 Exercise)
• Contact for the CMS electron efficiency (May 08-Oct08)
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Overview

• Introduction: Weak Vector Bosons
• Wenu channel

• CMS Experiment
• Overview of the Cross-Section Measurement
• W→ev Event Selection

• Electron Selection 
• Tuning with a Genetic Algorithm
• Tuning with the “Iterative Technique”

• Electron Selection Efficiency
• Signal Extraction

• Data-driven jet template
• Extrapolation-based signal extraction

• Cross-Section Results
• Outlook
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Introduction: Weak Vector Bosons

• The weak vector bosons (W,Z) have been discovered 

through their production in pp collisions and their 

leptonic decays (UA1 and UA2, 1983). 

• Since then the measurement of their properties have 

contributed to the establishment of the Standard Model. 

Few examples follow:
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Introduction: Weak Vector Bosons

• Number of Neutrino Species 

• Electroweak precision tests (mostly 
from precision Z measurements)

• Higgs mass constraint 
from W and top-quark mass
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Introduction: Weak Vector Bosons

• In pp collisions weak vector bosons play a very 
important role in physics and performance studies. 
Some examples:
• W+jets, Z+jets, multiboson production is an important 

background to new or rare SM physics
• Top-quark physics: t→Wb; Higgs physics: H→ZZ, H→WW
• Energy scale calibration using precisely known Z mass
• W is a major source of prompt leptons and real missing 

transverse energy (MET)
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Introduction: Weak Vector Bosons

• In pp collisions weak vector bosons play a very 
important role in physics and performance studies. 
Some examples:
• W+jets, Z+jets, multiboson production is an important 

background to new or rare SM physics
• Top-quark physics: t→Wb; Higgs physics: H→ZZ, H→WW
• Energy scale calibration using precisely known Z mass
• W is a major source of prompt leptons and real missing 

transverse energy (MET)

Very important tool for lepton and MET 
commissioning, which is the most important use 
of the measurement that is discussed in this talk
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Introduction:  W→ev process

• W→ev decay is the most abundant source of high-pT 
electrons and high MET events
• Cross section of ~10nb or ~5000 good electrons (p

T
>20GeV/c) 

per pb-1 in CMS
• Very useful in commissioning of

• electron reconstruction and identification
• MET

• Some physics measurements are also possible
•  pp → WX; W → ev  cross-section measurement is a test of 

perturbative QCD
» Can also be used as a luminosity estimator

• The ratio of W and Z production cross sections can give a 
precise (but indirect) measurement of Г

W
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The CMS Experiment

• General purpose detector designed to measure the 
output of LHC pp (and heavy ion) collisions

Basic features:
• Large solenoid magnet that 

encloses inner tracking and 
calorimetry systems

• All-silicon tracker
• Homogeneous 

electromagnetic calorimeter 
(ECAL)

• Hermetic calorimetric 
coverage (up to |η|<6.5 including 
the very forward calorimeters)
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The CMS Experiment

• CMS ECAL is a homogeneous
lead tungstate crystal calorimeter
• Designed to fit in the very compact 

CMS design
• Good energy resolution 

(stochastic term ~3% 
cf. ~10% for the ATLAS LiAr ECAL)

• Example of typical
particle interactions
in CMS 
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Overview of the Cross-section Measurement

=
N candidates−N bkg

A∫ Ldt

Signal extraction/ bkg removal

Integrated luminosity:
Measured with Hadronic 
Forward calorimeter, normalized 
from beam parametersAcceptance of kinematic cuts

Estimated from simulation 

• How to calculate a cross section

• In this talk I will focus on
• W-candidate selection 
• Selection efficiency
• Signal extraction

Efficiency of selection criteria

Dataset in use corresponds to 3pb-1

Measurement also described in
CMS-PAPER-EWK-10-002 
(accepted by JHEP)
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W→ev Event Selection

• W→ev events are characterized by a high-pT electron 
(>20GeV/c) and high MET (>20GeV)

• However, these criteria are not sufficient to extract a 
pure W sample
• A single reconstructed electron sample contains a very small 

number of prompt electrons

MET [GeV] ET [GeV]

Sources of Electron Background

Charged hadron - 0 overlap: 
matched in space with a photon shower 
from 0

Charged Hadrons showering early 
in ECAL, Charge exchange 
(+np)

Electrons from conversions 
or from heavy flavor quark decays
(real electrons)

Single reconstructed electron sample with electron ET>20GeV
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W→ev Event Selection

• A method to enrich the single electron candidate sample 
with prompt electrons is to apply selection criteria on the 
electron candidates based on prompt electron 
properties like:

• Isolation, Shower width and length,
Track-ECAL cluster matching in η and φ directions 
(Δη, Δφ)

• Conversion rejection:
search for a conversion partner track
search for missing hits in the inner tracker layers, 
before the first hit that belongs to the electron 
candidate track
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Electron Selection

• Electron Selection: specific case of a classification 
problem

• Statistical theory tells us (Neyman-Pearson lemma) that 
the best classifier is the likelihood ratio
• But difficult to calculate → approximations/use of other classifiers
• Classification with cuts on variables will use this classifier

•
 ci=tunable parameter : cut value on electron property xi

H : step function
And the tuning of the classifier parameters (c

i
, or “cuts”) is done by 

minimizing the function:

this effectively means that for a given signal, the cuts are chosen such 
that the background rejection is maximized – nothing new: exactly what 
the Neyman-Pearson lemma does, but in the case of a specific classifier

(1)
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Electron Selection Tuning

• There are many ways in the market to minimize
 Eq (1) of the previous slide
• All of them start from the definition of  signal and 

background samples, which are used for training/testing 
the classifier

• In the following I will focus on describing 2 techniques that I 
have worked in the past

»Tuning based on a Genetic Algorithm

»Tuning based on an Iterative Technique
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Tuning with a Genetic Algorithm Implementation

• Genetic algorithm is a well established technique, first 
used in the 1960's
• First application on physics in the 1990's with 

simulations of the fullerene structure

• Elements of the method
• A potential solution to the problem is codified in a 

“chromosome”, C in C

• Definition of operators:

»Mutation M : C → C

»Crossing X : C X C → C X C

• Ordering principle: C
1 
>  C

2
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Tuning with a Genetic Algorithm Implementation

c1
c2
c3
c4
c5

c1
c2
c3
c4
c5

c1
c2
c3
C'4
c5

c1
c2
c3
c4
c5

d1
d2
d3
d4
d5

c1
d2
c3
d4
c5

d1
c2
d3
c4
d5

Mutation operator Crossing operatorChromosome

Ordering through a “fitness function” : r x×Gaus  x−0

Bkg rejection Signal 
Efficiency

Target 
Efficiency

Steps : Create an initial chromosome population O(100)
             Perform Mutations and Crossings to increase its size
             Keep the best members of the population
             Iterate
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1.define a target in bkg rejection that is slightly higher 
than the current one

2. find which single cut can achieve this bkg rejection 
target with the highest signal efficiency

3.change this single cut only to obtain a new selection
4. iterate

The “Iterative Technique” for Selection Tuning

• The “Iterative Technique” is an approximation of the 
gradient descent minimization of Equation (1)
• It starts from a signal and background 

sample and a configuration with very loose
cuts

• Steps:

path followed by the 
iterative technique

optimal curve that the algorithm 
tries to approximate

iterative algorithm concept
illustration for a 2 cut case
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The “Iterative Technique” for Selection Tuning

• Validation of the algorithm using simulation
• Signal from W→ev; Bkg from jets+EWK bkgs to W→ev

using electrons with ET>30GeVusing electrons with ET>30GeV

Iterative

Genetic

Comparison with the 
Genetic Algorithm Tuning

Randomnly generated points, seeded by 
working points that the iterative produces

Moving the cut on a single variable 
(here ECAL isolation in EB)
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The “Iterative Technique” with MC Samples

• The “Iterative Technique” was used with MC samples to 
tune electron selections for different conversion 
rejection tightnesses

“WP80” selection
used for W→ev cross section

• When the first data became available the 
simulation was found to describe 
electrons pretty well

» Modulo the ECAL Endcaps–tracker 
misalignment

The MC-tuned electron 
selections have been 
used without the Δη cut 
in ECAL EE for electron 
identification in data 
throughout the first year 
of data taking for all 
CMS analyses that use 
electrons
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The “Iterative Technique” with MC Samples

• The “Iterative Technique” was used with MC samples to 
tune electron selections for different conversion 
rejection tightnesses

“WP80” selection
used for W→ev cross section

• When the first data became available the 
simulation was found to describe 
electrons pretty well

» Modulo the ECAL Endcaps–tracker 
misalignment

The MC-tuned electron 
selections have been 
used without the Δη cut 
in ECAL EE for electron 
identification in data 
throughout the first year 
of data taking for all 
CMS analyses that use 
electrons

All CMS analyses in 2010 with electrons have used 
one of these electron selections, e.g.

W and Z cross sections CMS-PAPER-EWK-10-002
Top quark production CMS-PAPER-TOP-10-001

Search for b'  CMS-PAPER-EXO-10-018
W charge asymmetry CMS-PAPER-EWK-10-006

W polarization CMS-PAPER-EWK-10-014
WW production observation CMS-PAS-EWK-10-009
single-lepton SUSY searches (e.g. CMS-CR-10-030)

...
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Data Driven Selection Tuning with the “Iterative Technique”

• Data-driven definitions of signal/bkg samples are also 
possible from a single electron (ET>20GeV) sample:
• Bkg: MET < 20GeV

loose conv. rejection

• Signal: 3 different ways 
»MET > 30GeV 
»MET > 30GeV plus jet veto 
»electrons from Zee

Example of MC test of the 
data-driven sample definitions

Tight conversion rejection

0.9pb-1Tuning example
with real data!
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Electron Selection Efficiency

• Electron selection efficiency is measured from data 
using a pure electron sample from Z decays (Tag-and-
Probe)
• One well identified electron tags the event and a second 

electron (probe) is used to estimate the efficiency
• Efficiency is estimated by a template fit of the tag-probe invariant 

mass spectrum for the tag+(probe passing selection) and the 
tag+(probe failing selection)

Example Fits: 
probes are reconstructed electrons that pass or fail WP80 selection
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Electron Selection Efficiency

• The W efficiency as it is measured using Z events is 
biased
• Kinematic differences between the W and Z lead to differences 

of the efficiency of the same selection
Z→ee and W→eν MC

Nominal from Zee

η/E
T
 rescaled efficiency

To allow for these kinematic 
differences the measured efficiency is 
corrected using simulation:

sele=
W ,MC

TP , MC
TP , DATA

Electron selection efficiency  is estimated

(including electron reconstruction + trigger efficiencies) 
sele=72.0 ± 2.8 
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Signal Extraction

• Despite the electron selection the final collection of W 
candidates contains a considerable amount of 
background

• Different methods to extract the
signal

MET distribution of W 
candidate events

electron ET>20GeV
passing “WP80” selection

“Template”-based:
Estimate signal and 
bkg shapes and 
extract the signal from 
a fit

e.g. this study

“Extrapolation”-based:
Extrapolate bkg to signal 
region from a bkg-rich region

e.g. D0 W width (2000),
CDF W,Z production (2005),
CMS-PAS-EWK-09-004,
this study (as a cross-check)
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“Template”-based Signal Extraction

• What it is all about:
• Estimate somehow the MET shape of the components of the W 

candidate sample
• Perform a fit to the data to extract the number of signal events

Nf DATAMET =N jet f jet MET NW f W MET 

Many options on how to 
construct templates

Data-driven: 
using a selection that rejects signal

Ansatz-based: 
assuming a priori a functional form 

Data-driven: 
using Zee events

Simulation-based: 
needs corrections for possible differences 
in MET resolution between data-MC 
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“Template”-based Signal Extraction

• What it is all about:
• Estimate somehow the MET shape of the components of the W 

candidate sample
• Perform a fit to the data to extract the number of signal events

Nf DATAMET =N jet f jet MET NW f W MET 

Many options on how to 
construct templates

Data-driven: 
using a selection that rejects signal

Ansatz-based: 
assuming a priori a functional form 

Data-driven: 
using Zee events

Simulation-based: 
needs corrections for possible differences 
in MET resolution between data-MC 

Selected templates for the final result
(the other methods used as a cross-check when lumi allows)
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“Template”-based Signal Extraction

• Jet “template”: 
physics-motivated Rayleigh function ansatz

“Rayleigh”
Data-driven
(points) 

• W “template”: from simulation
• model from data the components of U in bins 

of boson pT assuming gaussian behavior
• correct the Wev simulation 

e+

e-

Z→ee

MET
U

1

U
2

U

U=− E T ,e1E T ,e2− MET
Example recoil fits on Z data

<U
1
>(p

TZ
)

U
1 
in a given p

TZ
 bin
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“Template”-based Signal Extraction

• Other bkgs apart from jets are modeled directly from 
simulation and added to the signal “template”
• Most important processes: W→τv,

Z→ττ, top production
• contribute ~13% of signal yield

• Excellent agreement with data

Number of signal events from the fit:

N = 11 895 ± 115
(statistical uncertainty only)

electron ET>20GeV
passing “WP80” selection
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Data-driven Jet-“template”

• Data-driven jet “templates” have been used as a cross-
check of the result
• Defined by a selection that rejects signal: invert track-ECAL 

cluster matching cuts (Δη and Δφ)
• Assumption: the inverted cuts are uncorrelated with MET

» And this is not quite true: possible to derive a correction with more 
data.

» This is the major source of systematic 
uncertainty of this method 

35pb-1

With 3pb-1 the result using 
this jet template is in 
agreement with the 
Rayleigh “template” within 
1.2%
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“Extrapolation-based” signal extraction 

• Benchmark method in the CMS before data taking
• Based on finding 2 uncorrelated variables as far as the 

jet distribution is concerned: here MET and Isolation

MET

Is
o

la
ti

o
n fail selection

pass 
selection

I
cut

MET
cut

AB

C D

Inputs of the method:

1. Events in A,B,C,D regions (from data)
2. MET efficiencies for signal events: 
    ε

A
=S

A
/S

AB
, ε

D
=S

D
/S

CD

   (signal MET template needed)
3. Isolation efficiency for signal 
    ε

P
=S

AB
/S

ABCD

    (Tag-and-Probe from Z electrons)

By assuming that for jet events
f
A
≡Q

A
/Q

AB
  =  f

D
≡Q

D
/Q

CD

(i.e. jet shape extrapolation from CD to AB)
The total signal S

ABCD
 can be extracted
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“Extrapolation-based” signal extraction 

• Jet shape assumption f
A
 = f

D
 does not hold exactly

• This will result in a biased 
predicted number of signal events

• A correction can be derived from
data using the shapes from
the data-driven jet “template”

MET
cut 

(GeV)

f
D
-f

A Simulation:
Jets vs  jet “template”

But for all these you really need DATA, 
more data than 3pb-1

With 36pb-1 a data-driven correction of about 0.4% was derived
The overall systematic in the signal extraction is 1.2% (very 
preliminary) and dominated by efficiency uncertainties
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Systematics

This figure will become smaller with more data 
either because of their statistical nature or due to the fact that more 
data will permit the implementation of other methods

• Total systematic uncertainty (without luminosity error) 
~5% 
• c.f. Statistical error: 1% and  luminosity error: 11%

Highest systematic in the 
efficiency measurement: most of it 
is of statistical nature

“template” related errors 
~2.2% (more data will 
allow other potentially 
more accurate methods)

Electron energy scale 
determined from Zee
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Cross-Section Measurement (3pb-1)

• Results:

=
N candidates−N bkg

A∫ Ldt

N candidates−N bkg=11895±115stat 

A=0.571±0.09 theory

=0.720±0.028

∫ Ldt=2.88±0.32 pb−1

• Final result in very good agreement with theory

• Combined electron+muon result for the ratio

Sensitive to Γ
W
 at about 4% level! 

(c.f. 2% all direct measurements combined) 

W BrW  l
Z Br Z l l 

=10.64±0.40
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Prospects for the Future

• Still room for improvement in the systematics
• Electron selection efficiency and energy scale are determined 

from Z data, which are statistically limited

• Preliminary results suggest that template systematics also 
reduced with more data, e.g. 

»data-driven jet template is at 0.6% (c.f. currently: 1.3%) 
» “extrapolation-based” signal extraction is about 1.2% (c.f. 

Currently: 2.2 + 2%)

• New cross-section measurement with ~35pb-1 ongoing
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Additional Slides
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“Iterative Technique” internal parameter tuning

Step convergenceInitial Conditions

• The algorithm internal 
parameters have to be 
chosen appropriately in 
order to achieve the 
optimal performance
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